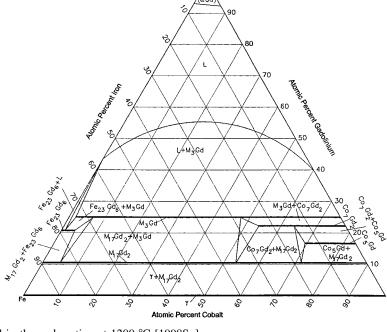
## Co-Fe-Gd (Cobalt-Iron-Gadolinium)

V. Raghavan

[1990Ati] determined an isothermal section for this system at 1050 °C (reviewed by [1992Rag]). Recently, [1998Su] employed the tie-line compositions determined by the diffusion-couple technique by [1995She] to optimize the thermodynamic interaction parametes. They computed six isothermal sections that agree reasonably well with the limited experimental results available.

## **Binary Systems**


The Co-Fe phase diagram was reviewed by [1993Nis]. The fcc phase  $\gamma$  forms through a peritectic reaction at 1499 °C between bcc  $\delta$  and liquid. The Co and Fe form a continuous fcc solid solution ( $\gamma$ ) over a wide range of temperature, which transforms to bcc ( $\alpha$ ) below 985 °C. An order-disorder transformation occurs in the equiatomic  $\alpha$  phase at 730 °C and the CsCl-type ordered phase exists over a wide composition range below this temperature. The Co-Gd phase diagram was calculated by [1995Liu]. There are seven intermetallic phases in this system: Co<sub>17</sub>Gd<sub>2</sub>, Co<sub>5</sub>Gd, Co<sub>7</sub>Gd<sub>2</sub>, Co<sub>3</sub>Gd, Co<sub>2</sub>Gd, Co<sub>3</sub>Gd<sub>4</sub>, and CoGd<sub>3</sub>. With the exception of Co<sub>17</sub>Gd<sub>2</sub>, they form through peritectic reactions. The final solidification is through a eutectic reaction at 645 °C and 63.2 at.% Gd. The Fe-Gd phase diagram was reassessed by [1998Zha]. There are four line compounds in this system: Fe<sub>17</sub>Gd<sub>2</sub>,

 $Fe_{23}Gd_6$ ,  $Fe_3Gd$ , and  $Fe_2Gd$ . All of them form through peritectic reactions. The final solidification is through a eutectic reaction at 832 °C and 73.6 at.% Gd.

## **Ternary Isothermal Sections**

The isothermal section at 1050 °C determined by [1990Ati] (reviewed in [1992Rag]) shows that the pairs  $Fe_{17}Gd_2$ - $Co_{17}Gd_2$ ,  $Fe_3Gd$ - $Co_3Gd$ , and  $Fe_2Gd$ - $Co_2Gd$  form continuous solid solutions. These solutions are denoted here by  $M_{17}Gd_2$ ,  $M_3Gd$ , and  $M_2Gd$ , respectively. [1995Liu] evaluated the thermodynamic properties of this ternary system, using the experimental results of [1990Ati].

[1995She] studied the phase equilibria in this system by the diffusion-couple technique and presented five isothermal sections at 1200, 1050, 1000, 950, and 900 °C. Tie-line compositions were determined for the pairs  $\gamma$ -M<sub>17</sub>Gd<sub>2</sub>, M<sub>17</sub>Gd<sub>2</sub>-M<sub>3</sub>Gd, M<sub>3</sub>Gd-M<sub>2</sub>Gd, M<sub>17</sub>Gd<sub>2</sub>-Co<sub>5</sub>Gd, Co<sub>5</sub>Gd-Co<sub>7</sub>Gd<sub>2</sub>, and Co<sub>7</sub>Gd<sub>2</sub>-M<sub>3</sub>Gd. Using the experimental data of both [1990Ati] and [1995She], [1998Su] optimized the thermodynamic properties of the ternary system and recalculated the ternary equilibria at 1200, 1050, 1000, 950, 900, and 427 °C. The calculated and experimental tie-line compositions agree reasonably well. The computed isothermal sections at 1200, 900, and 427 °C are redrawn in Fig. 1, 2, and 3. The liquid phase region shrinks from Fig. 1 to Fig. 2 and is not



(aGd)

Fig. 1 Co-Fe-Gd computed isothermal section at 1200 °C [1998Su]

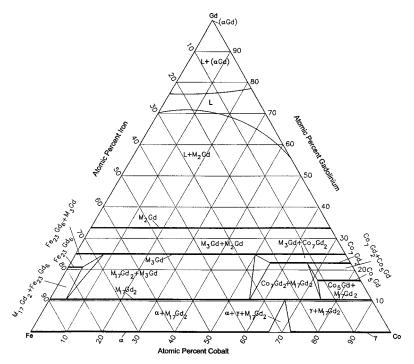



Fig. 2 Co-Fe-Gd computed isothermal section at 900 °C [1998Su]

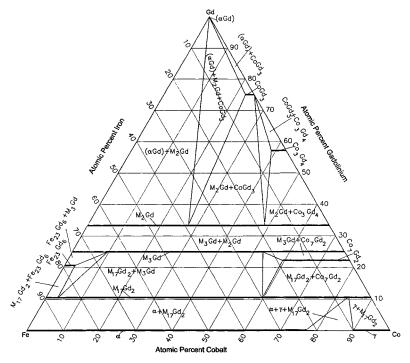



Fig. 3 Co-Fe-Gd computed isothermal section at 427 °C [1998Su]

present at 427 °C. Both Co<sub>5</sub>Gd and Co<sub>7</sub>Gd<sub>2</sub> are stable at 1200 and 900 °C. The  $\alpha$  phase is present at 900 °C. At 427 °C (Fig. 3), Co<sub>5</sub>Gd is not stable; at high Gd contents, Co<sub>3</sub>Gd<sub>4</sub> and CoGd<sub>3</sub> are present. The ordering reaction in the  $\alpha$  phase is neglected in Fig. 3.

A schematic liquidus surface deduced from the isothermal sections and the binary invariant reactions is shown in Fig.

4. The phases of primary crystallization are marked in the appropriate regions.

## References

**1990Ati:** S. Atiq, R.D. Rawlings, and D.R.F. West: *J. Mater. Sci. Lett.*, 1990, vol. 9 (5), pp. 518-19.

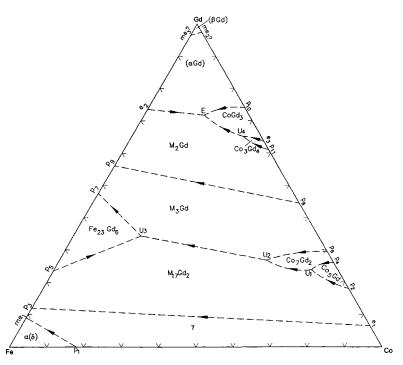



Fig. 4 Co-Fe-Gd schematic liquidus projection

- **1992Rag:** V. Raghavan: *Phase Diagrams of Ternary Iron Alloys,* Part 6, Indian Institute of Metals, Calcutta, 1992, pp. 604-08.
- **1993Nis:** T. Nishizawa and K. Ishida: in *Phase Diagrams of Binary Iron Alloys*, H. Okamoto, ed., ASM International, Materials Park, OH, 1993, pp. 93-101.
- **1995Liu:** Z.K. Liu, W.J. Zhang, and B. Sundman: *J. Alloys Compounds*, 1995, vol. 226, pp. 33-45.
- **1995She:** H. Shen, W. Zhang, R. Wang, Z. Du, and G. Liu: *Proc.* 8th Nat. Symp. Phase Diagrams, Xian, People's Republic of China, 1995, pp. 54-56.
- **1998Su:** X. Su, W. Zhang, and Z. Du: J. Alloys Compounds, 1998, vol. 269, pp. 144-50.
- **1998Zha:** W. Zhang, C. Li, X. Su, and K. Han: *J. Phase Equilibria*, 1998, vol. 19 (1), pp. 56-63.